Abstract

One of the major causes of global mortality is respiratory diseases. Fine particulate matter (PM2.5) increased the risk of respiratory death in short-term exposure. PM2.5 is the chemical mixture of components with different health effects. The combined health effects of PM2.5 are determined by the role of each component and the potential interaction between components, but they have not been studied in short-term exposure. Sichuan Province (SC), with high respiratory mortality and heavy PM2.5 pollution, had distinctive regional differences in four regions in sources and proportions of PM2.5, so it was divided into four regions to explore the combined health effects of PM2.5 components on respiratory mortality in short-term exposure and to identify the main hazardous components. Due to the multicollinear, interactive, and nonlinear characteristics of the associations between PM2.5 components and respiratory mortality, Bayesian kernel machine regression (BKMR) was used to characterize the combined health effects, along with quantile-based g-computation (QGC) as a reference. Positive combined effects of PM2.5 were found in all four regions of Sichuan using BKMR with excess risks (ER) of 0.0101–0.0132 (95 % CI: 0.0093–0.0158) and in the central basin and northwest basin using QGC with relative risks (RR) of 1.0064 (95 % CI: 1.0039, 1.0089) and 1.0044 (95 % CI: 1.0022, 1.0066), respectively. In addition, the adverse health effect was larger in cold seasons than that in warm seasons, so vulnerable people should reduce outdoor activities in heavily polluted days, especially in the cold season. For the components of PM2.5, the BC and OM mainly from traffic, dominated the adverse health effects on respiratory mortality. Furthermore, NO3− might aggravate the adverse health effects of BC/OM. Therefore, BC/OM and NO3− should be focused together in air pollution control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.