Abstract

A geophysical investigation of subsurface structures using the Syscal Junior 48 resistivity-meter was conducted in Ngoura subdivision (East Cameroon) following a combined geoelectrical direct current (DC) approach involving Resistivity and IP methods. This investigation was allowed to collect data on forty-five (45) profiling lines at three acquisition levels (AB = 100 m, MN = 10 m; AB = 200 m, MN = 20 m and AB = 500 m, MN = 50 m) and two electric panels L1 and L4, using the Schlumberger array. Processing, modeling and interpretation of data collected using the Winsev, Res2Dinv and Surfer software helped in highlighting a conductive and strongly mineralized discontinuity in granite formations, which lined up with the NE-SW Kadei tectonic line. It extends beyond 100 m depth over an average width of 600 m. The mineralization associated with this discontinuity is identified by a high concentration of disseminated metalliferous minerals in quartz or pegmatite veins. The mining reconnaissance works in the study area and those of several authors have characterized this anomaly to a lode gold quartz or large pegmatite. The results of this study correlate with geological and tectonic data for the region marked by NE-SW Kadei tectonic line. Therefore, they confirm the reliability of a geoelectrical DC investigation method combining Resistivity and IP to the identification of ore bodies.

Highlights

  • Ore bodies’ quest is a major concern for mining research. It assesses the mineral potential of the area. It is in this perspective that a geophysical investigation combining simultaneously Induced Polarization (IP) and direct current (DC) geoelectrical methods is conducted in Ngoura subdivision (East Cameroon)

  • East of the iso-value maps at all investigated depths (19 m, 38 m and 95 m), a NE-SW conductive anomaly characterized by high resistivity contrast and tightening of iso-contours is observed parallel to the Kadei tectonic line

  • A combined approach involving geoelectrical DC resistivity and IP methods was used as geophysical tool in the investigation of subsurface structures in the Ngoura subdivision (East Cameroon)

Read more

Summary

Introduction

Ore bodies’ quest is a major concern for mining research. It assesses the mineral potential of the area. The results (from resistivity and chargeability maps, resistivity and chargeability pseudo-sections and geological sections) from this campaign will make it possible to map and identify mineralized or gold-bearing bodies along the tectonic lines (fractures or shear zones) in the Ngoura subdivision. They will reveal the reliability of a combined approach involving DC resistivity and IP geoelectrical methods in geophysical investigations

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call