Abstract

BackgroundGenome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins.ResultsThe 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose.ConclusionsThe comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.

Highlights

  • Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrad‐ ing mechanisms in a number of fungal species

  • A comparison of internal transcribed spacer (ITS) sequences to other M. cinnamomea strains in the NCBI Genbank database revealed a very high sequence identity of strain FCH 10.5 to CM-10T, isolated from composting soil near Punjab, India, which had been the subject of an earlier proteomics analysis [26] (Additional file 3)

  • Previous studies have shown that M. cinnamomea has high cellulolytic and hemicellulolytic activities when cultivated on wheat bran, rice straw, sorghum straw or cellulose [16, 27, 44]

Read more

Summary

Introduction

Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrad‐ ing mechanisms in a number of fungal species. The alternative use of renewable and abundant (ligno)cellulosic materials, i.e. plant cell walls, as feedstocks in second-generation biorefineries has been the subject of intense research and innovation during recent decades [1,2,3]. Microbial cells and their enzymes are here utilised to convert low-value biomass into valuable products such as biofuels and biochemicals. These carbohydrate-active enzymes (CAZymes) are involved in the assembly and breakdown of complex carbohydrates and glycoconjugates, and have been classified into glycoside hydrolases (GHs), glycosyltransferases (GTs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), enzymes with auxiliary activities (AAs) and carbohydrate-binding modules (CBMs)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call