Abstract

In this study, we combined advanced MR techniques to explore primary motor cortex (M1) connectivity in the human brain. We matched functional and anatomical information using motor functional MRI (fMRI) and white matter tractography inferred from diffusion tensor imaging (DTI). We performed coregistered DTI and motor task fMRI in 8 right-handed healthy subjects and in 1 right-handed patient presenting with a left precentral tumour. We used the fast-marching tractography (FMT) algorithm to define 3D connectivity maps within the whole brain, from seed points selected in the white matter adjacent to the location of the maximum of fMRI activation. Connectivity maps were then anatomically normalised and analysed using statistical parametric mapping software (SPM99) allowing group comparisons (left versus right hemisphere in control subjects and patient versus control subjects). The results demonstrated, in all control subjects, strong connections from M1 to the pyramidal tracts, premotor areas, parietal cortices, thalamus, and cerebellum. M1 connectivity was asymmetric, being more extensive in the dominant hemisphere. The patient had differences in M1 connectivity from the control group. Thus, fMRI-correlated DTI-FMT is a promising tool to study the structural basis of functional networks in the human brain in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.