Abstract

Electrochemical oxidation of spark-deposited coatings from intermetallic TiAl3 and TiN–3AlN nitride ceramics in 3% NaCl solution leads to a nanosized surface layer composed of titanium oxides of various composition: from higher to lower oxides toward the substrate. The highest corrosion resistance is shown by the intermetallic coating, which is confirmed by anodic oxidation polarization curves and layerwise Auger spectroscopy of protective titanium and aluminum oxide films. A combined biocoating is produced as follows: electrospark deposition of TiAl3 layer onto VT-6 alloy—electrochemical oxidation in 3% NaCl solution—deposition of hydroxyapatite layer—laser fusion. Energy-dispersive X-ray spectroscopy has revealed a wide adhesion area at the interface between the spark-deposited coating and hydroxyapatite, which agrees with smooth variation in microhardness in this area. The coating shows strong adhesion to the substrate and biocompatibility with the bone tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call