Abstract

The fully developed mixed convection flow in a vertical circular duct is investigated analytically, under the assumption of laminar parallel flow. A wall heat flux uniform in the axial direction and dependent on the angular coordinate is considered. As a consequence, the fluid temperature is three dimensional, since it changes in the radial, axial and angular directions. An analytical method based on Fourier series expansions of temperature and velocity fields is adopted to determine the velocity and the temperature distributions as well as the friction factor and the average Nusselt number. The general solution, expressed in terms of Bessel functions, is applied to study a case that has a special importance in technical applications: a duct whose wall is half subject to a uniform heat flux and half adiabatic. The positive and negative threshold values of the ratio between the Grashof number Gr and the Reynolds number Re for the onset of the flow reversal phenomenon are determined. A comparison between the average Nusselt number for the considered non-axisymmetric case and that for the case of a duct subject to a uniform wall heat flux is performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.