Abstract

The purpose of this work was to develop a combined remodeling-to-fracture finite element model allowing for the combined simulation of human proximal femur remodeling under a given boundary conditions followed by the simulation of its fracture behaviour under quasi-static load. The combination of remodeling and fracture simulation into one unified model consists in considering that the femur properties resulting from the remodeling simulation correspond to the initial state for the fracture prediction. The remodeling model is based on a coupled strain and fatigue damage stimulus approach. The fracture model is based on continuum damage mechanics in order to predict the progressive fracturing process, which allows to predict the fracture pattern and the complete force-displacement curve under quasi-static load. To investigate the potential of the proposed unified remodeling-to-fracture model, we performed remodeling simulations on a 3D proximal femur model for a duration of 365 days followed by a side fall fracture simulation reproducing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call