Abstract
We consider a partially observable, discrete-time process{xt, θt, yt} over a finite horizon T, where the unobservable components are {xt, θt}. Conditionally on {θt}, the pair {xt}, {yt} satisfies a linear model of the form (1) below; {θt} itself evolves according to a given joint a-priori distribution p(θ0,…, θT), The purpose of the paper is to determine recursively the joint conditional distribution p(xt, θt|yt), (yt: = {y0,…,yt}), or, more specifically, E{f(xt, θt)|yt}, namely the (mean squre)optimal filter for a given When θtis constant our problem becomes that of the combined filtering and parameter estimation.The optimal filter is computed for the ideal situation of white Gaussian noises and it is shown that, when this filter is applied to a more realistic situation where the noises are only approximately (in the sense of weak convergence of measures) white Gaussian and also {θt} has only approximately the given distribution p(θ0,…,θT), then it remains almost (mean-square) optimal with respect to all alternative filters that are continuous and bounded functions of the past observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.