Abstract
In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by the frit fly, Oscinella frit, a major pest of cereals. Hence, beneficial impacts differed between the beneficial soil organisms and were most evident for plants under biotic stress. Overall, our findings indicate that in wheat production under the test conditions the three beneficial soil organisms can establish nicely and are compatible, but their combined application provides no additional benefits. Further studies are required, also in other cropping systems, to fine-tune the functional interactions among beneficial soil organisms, crops, and the environment.
Highlights
In addition to poor soil fertility, soil pests and pathogens pose major threats to the health and productivity of crops in agricultural ecosystems resulting in important yield losses every year (Oerke, 2006; Kupferschmied et al, 2013)
In the COMBINATION trial, P. protegens CHA0-Rif and P. chlororaphis PCL1391 reached similar population densities that surpassed the threshold of ∼105 colony forming units (CFU) per gram of roots, which is the level needed for a plant-beneficial effect (Haas and Défago, 2005) (Figure 1A; Table 4)
The three field experiments showed consistent results: (1) the inoculated beneficial soil organisms (BeSO) persisted until the end of the crop season, their prevalence gradually declined with time; (2) in most of cases, the introduced BeSO in augmented plots were consistently present at higher levels than the native populations, without cross-contamination between plots; (3) the augmented BeSO integrated with or displaced the natural community to varying degrees depending on the strain/population and dosage; and (4) the combined application of Pseudomonas, entomopathogenic nematodes (EPN), and arbuscular mycorrhizal fungi (AMF) showed only beneficial effects under conditions with an insect outbreak
Summary
In addition to poor soil fertility, soil pests and pathogens pose major threats to the health and productivity of crops in agricultural ecosystems resulting in important yield losses every year (Oerke, 2006; Kupferschmied et al, 2013). New and more sustainable pest and disease control strategies need to be explored for a next-generation agriculture and the application of beneficial soil organisms (BeSO) presents a promising alternative for maintaining crop health and productivity (Bommarco et al, 2013; Bender et al, 2016). The three groups of BeSO investigated in the present study fulfill one or several of these beneficial functions, i.e., plant-growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN). Certain subgroups, in particular the two species Pseudomonas protegens and Pseudomonas chlororaphis exhibit potent oral insecticidal activity notably against Lepidopteran pests (Kupferschmied et al, 2013; Ruffner et al, 2013; Flury et al, 2016)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.