Abstract

BackgroundA proprietary composition GMCT contains extracts of two popular Asian herbs viz., Garcinia mangostana (GM) fruit rind and Cinnamomum tamala (CT) leaf. We systematically evaluated physical performance and muscle strength enhancing ability of GMCT in a preclinical mouse model followed by a 42-days double-blind placebo controlled human trial in resistance trained adult males.MethodsFour groups of Swiss albino mice (20–30 g body weight) (n = 6) were fed a standard laboratory diet and given Carboxymethylcellulose sodium (CMC), 150 mg/kg GMCT (GMCT-150), 300 mg/kg GMCT (GMCT-300) or 50 mg/kg Oxymetholone (OXY) via oral gavage for 21 days. On day 22, the animals’ physical performance and muscle strength were assessed in a forced swimming test (FST) and forelimb grip strength experiment, respectively.In the human trial, thirty-eight resistance-trained young adults (mean age 26.32 ± 4.39 years, body weight 67.79 ± 12.84 kg, BMI 22.92 ± 3.54 kg/m2) completed the trial. The participants received either GMCT (n = 19; 800 mg daily) or matched placebo (n = 19) for 42 days. As primary variables, 1-RM bench press, 1-RM leg press, and leg extension repetitions were measured at baseline and on days 14, 28 and 42 of the intervention. Anthropometric parameters and serum markers such as free testosterone, insulin-like growth factor 1 (IGF-1), insulin and lactate were also measured before and after the intervention.ResultsGMCT-300 mice showed significant improvement in swimming time (GMCT: 395.3 ± 81.70 s vs. CMC: 271.6 ± 56.86 s; p = 0.0166), distance (GMCT: 341.22 ± 65.88 m vs. CMC: 260.84 ± 49.15 m; p = 0.0461) and grip strength (GMCT: 43.92 ± 6.97 N vs. CMC: 35.0 ± 6.92 N; p = 0.0490), compared with the CMC group.At the end of the 42-day human trial, the per protocol analyses reveal that mean changes from baseline 1-RM bench press (GMCT: 23.47 ± 10.07 kg vs. PL: 3.42 ± 2.06 kg; p < 0.0001), leg press (GMCT: 29.32 ± 16.17 kg vs. PL: 5.21 ± 1.72 kg; p < 0.0001), number of leg extension repetitions (GMCT: 6.58 ± 2.57 vs. PL: 2.05 ± 1.22; p < 0.0001) in GMCT group were significantly improved, compared with placebo. Intergroup difference analyses show that the changes from baseline left arm (GMCT: 1.09 ± 0.36 cm vs. PL: 0.68 ± 0.42 cm; p = 0.0023), right arm (GMCT: 1.50 ± 0.44 cm vs. PL: 1.11 ± 0.43 cm; p = 0.0088) circumference and lean mass (GMCT: 2.29 ± 2.09 kg vs. PL: 0.52 ± 2.58 kg; p = 0.0404) in GMCT group were also significantly improved, compared with placebo. In comparison to placebo, GMCT supplementation did not improve free testosterone, IGF-1, insulin or lactate levels. Parameters of clinical biochemistry, hematology, urine and vital signs of the participants were within the normal range.ConclusionGMCT supplementation is effective in increasing muscle strength, muscle size and, total lean mass, as well as endurance performance.Trial Registration.Clinical Trial Registry of India (CTRI/2015/01/005374), Registered on Jan 07, 2015; CTRI Website URL - http://ctri.nic.in

Highlights

  • A proprietary composition GMCT contains extracts of two popular Asian herbs viz., Garcinia mangostana (GM) fruit rind and Cinnamomum tamala (CT) leaf

  • GMCT supplementation is effective in increasing muscle strength, muscle size and, total lean mass, as well as endurance performance

  • These improvements in the OXY group were not statistically different when compared with the GMCT-150 (p = 0.2701, swimming time; p = 0.2209, distance covered) and the GMCT-300 (p = 0.9684, swimming time; p = 0.5968, distance covered)

Read more

Summary

Introduction

A proprietary composition GMCT contains extracts of two popular Asian herbs viz., Garcinia mangostana (GM) fruit rind and Cinnamomum tamala (CT) leaf. Growing evidence from nutritional research has established that dietary supplements improve physical performance, accelerate post-exercise recovery, increase muscle mass and reduce body fat [2,3,4]. Controversy exists whether exogenous sources of nitric oxide benefits physical performance in trained individuals [12]. A large pool of observations indicates that physical exercise enhances eNOS dependent NO synthesis and in cooperation with AMPK, nitric oxide up-regulates PGC1α and mitochondrial function to improve skeletal muscle function [13, 14]. Given the importance of improved mitochondrial function for skeletal muscle performance, an attractive approach lies in augmenting endogenous nitric oxide pathway to enhance physical performance in conjunction with a training protocol

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.