Abstract

A combined unbiased finite impulse response (UFIR) and Kalman filtering algorithm is proposed for mobile robot localization via triangulation utilizing noisy measurements. We consider a mobile robot travelling on an indoor floorspace with three nodes in a view. Under the not well-known initial robot state and noise statistics, the extended Kalman filter (EKF) may produce unacceptable estimates. The iterative extended UFIR (EFIR) filter ignores the noise statistics, but requires N initial points of linear measurements which are unavailable. The combined EFIR/Kalman algorithm utilizes N first EKF estimates with approximately set initial conditions and noise statistics as linear measurements for EFIR filter. It is shown that the combined algorithm is more accurate than EKF in robot localization under the real operation conditions. Simulations are provided for piecewise and circular robot trajectories.

Highlights

  • Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience

  • This is the other version of the paper

  • Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge

Read more

Summary

City Research Online

This is the other version of the paper. This version of the publication may differ from the final published version. Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way

Creative Commons Legal Code
Using Creative Commons Public Licenses
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.