Abstract

Minerals and trace elements were involved in the pathogenesis and progression of diabetes. However, the association of mixed exposure to essential elements and toxic elements with gestational diabetes mellitus (GDM) is poorly understood. This study aims to examine the associations between serum calcium (Ca), iron (Fe), zinc (Zn), copper (Cu), magnesium (Mg), and cadmium (Cd) concentrations in early pregnancy and GDM risk in Chinese pregnant women. A total of 1,168 pregnant women were included in this prospective cohort study. The concentrations of serum elements were measured using the polarography method before 14 gestational weeks and an oral glucose tolerance test was conducted at 24-28 gestational weeks to diagnose GDM. Binary logistic regression analysis and restricted cubic spline were applied to evaluate the association between serum individual element and GDM. Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression were used to assess the associations between mixed essential elements and Cd exposure and GDM risk. The mean concentrations of Zn (124.65 vs. 120.12 μmol/L), Fe (135.26 vs. 132.21 μmol/L) and Cu (23.33 vs. 23.03 μmol/L) in the GDM group were significantly higher than those in the control group. Single-element modeling results suggested that second and fourth-quartile maternal Zn and Fe concentration, third and fourth-quartile Cu concentration and fourth-quartile Ca concentration were associated with an increased risk of GDM compared to first-quartile values. Restricted cubic spline analysis showed U-shaped and non-linear relationships between Cd and GDM. According to the BKMR models and WQS analyses, a six-element mixture was significantly and positively associated with the risk of GDM. Additionally, Cd, Zn, and Cu contributed the most strongly to the association. Serum Zn, Cu, Fe, and Ca exposure during early pregnancy showed a positive association with GDM in the individual evaluation. The multiple-evaluation showed that high levels of elements mixture, particularly Cd, Zn, and Cu, may promote the development of GDM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.