Abstract

Pesticides and plastics bring convenience to agriculture and life, but also bring residual pollution in the environment. Emamectin benzoate (EMB) is the most popular pesticide at present. The harm of microplastics (MPs) to water and aquatic organisms is gradually increasing, and the possibility that it appears synchronously with various pesticides increases. However, the damage of EMB and MPs to the carp midgut and its mechanism have not been clarified. Therefore, based on the EMB or/and MPs exposure models, this study explored the mechanism of midgut injury through transcriptomics, immunofluorescence, western blot methods, and so on. Studies in vivo and in vitro showed that EMB or MPs exposure caused cilia shortening, lysosome damage, and ROS overproduction, which led to Fe2+ content increase, GSH/GSSG system disorder, lipid peroxidation, and ferroptosis. This process further led to the down-regulation of Cx43, Occludin, Claudin, and ZO-1, which further caused barrier damage, immune-related genes (immunoglobulin, IFN-γ) decrease and inflammation-related genes (TNF-α, IL-1β) increase. Combined exposure was more significant than that of single exposure, and the addition of EN6 and NAC proved that lysosome/ROS/ferroptosis regulated these midgut damages. In conclusion, EMB or/and MPs exposure induce tight junction disorder, immune disorder and inflammation in carp midgut through the lysosome/ROS/ferroptosis pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call