Abstract
HypothesisElucidation of the micro-mechanisms of sol–gel transition of gelling glucans with different glycosidic linkages is crucial for understanding their structure–property relationship and for various applications. Glucans with distinct molecular chain structures exhibit unique gelation behaviors. The disparate gelation phenomena observed in two methylated glucans, methylated (1,3)-β-d-glucan of curdlan (MECD) and methylated (1,4)-β-d-glucan of cellulose (MC), notwithstanding their equivalent degrees of substitution, are intricately linked to their unique molecular architectures and interactions between glucan and water. ExperimentsDensity functional theory and molecular dynamics simulations focused on the electronic property distinctions between MECD and MC, alongside conformational variations during thermal gelation. Inline attenuated total reflection Fourier transform infrared spectroscopy tracked secondary structure alterations in MECD and MC. To corroborate the simulation results, additional analyses including circular dichroism, rheology, and micro-differential scanning calorimetry were performed. FindingsDespite having similar thermally induced gel networks, MECD and MC display distinct physical gelation patterns and molecular-level conformational changes during gelation. The network of MC gel was formed via a “coil-to-ring” transition, followed by ring stacking. In contrast, the MECD gel comprised compact irregular helices accompanied by notable volume shrinkage. These variations in gelation behavior are ascribed to heightened hydrophobic interactions and diminished hydrogen bonding in both systems upon heating, resulting in gelation. These findings provide valuable insights into the microstructural changes during gelation and the thermo-gelation mechanisms of structurally similar polysaccharides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.