Abstract

We have used experimental deuterium NMR spectra from labeled tryptophans in membrane-spanning gramicidin A (gA)(1) channels to refine the geometry of the indole ring and, specifically, the C2-(2)H bond direction. By using partial exchange in a cold organic acid, we were able to selectively deuterate ring positions C2 and C5 and, thereby, define unambiguous spectral assignments. In a backbone-independent analysis, the assigned spectra from four distinct labeled tryptophans were used to assess the geometry of the planar indole ring. We found that the C2-(2)H bond makes an angle of about 6 degrees with respect to the normal to the indole ring bridge, and the experimental geometry was confirmed by density functional calculations using a 6-311G** basis set. The precisely determined ring geometry and the experimental spectra in turn are the foundation for calculations of the orientation of each tryptophan indole ring, with respect to the bilayer membrane normal, and of a principal order parameter S(zz) for each ring. The results have general significance for revising the tryptophan ring geometry that is used in protein molecular modeling, as well as for the analysis of tryptophan ring orientations in membrane-spanning proteins. The experimental precision in the definition of the indole ring geometry demonstrates yet another practical application emanating from fundamental research on the robust gramicidin channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.