Abstract

Lightly damped non-linear dynamic driveline components are subjected to excitation with rapid application of clutch and/or throttle. Modern thin-walled driveshaft tubes respond with a plethora of structural-acoustic modes under such impulsive conditions, which are onomatopoeically referred to as clonk in the vehicle industry. The underlying mechanisms for the occurrence of this phenomenon are investigated, using combined experimentation and flexible multi-body dynamics under impulsive impact conditions. The coincidence of high-frequency structural modes, coupled with acoustic response is highlighted for the broad-band spectral response of the hollow driveshaft tubes. The cyclic relationship of clonk with the shuffle response of the driveline system is also established for transient decay of the clonk phenomenon. In particular, the multi-body model is used to ascertain the effect of vehicle laden state on the propensity of driveline clonk, an approach not hitherto reported in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.