Abstract

The direct fermentation of the precursor of vitamin C, 2-keto-L-gulonic acid (2-KLG), has been a long-pursued goal. Previously, a strain of Gluconobacter oxydans WSH-004 was isolated that produced 2.5 g/L 2-KLG, and through adaptive evolution engineering, the strain G. oxydans MMC3 could tolerate 300 g/L D-sorbitol. This study verified that the sndh–sdh gene cluster encoded two key dehydrogenases for the 2-KLG biosynthesis pathway in this strain. Then G. oxydans MMC3 further evolved through adaptive evolution to G. oxydans 2-KLG5, which can tolerate high concentrations of D-sorbitol and 2-KLG. Finally, by increasing the gene expression levels of the sndh–sdh and terminal oxidase cyoBACD in G. oxydans 2-KLG5, the 2-KLG accumulation in the 5-L fermenter increased to 45.14 g/L by batch fermentation. The results showed that combined evolutionary and metabolic engineering efficiently improved the direct production of 2-KLG from D-sorbitol in G. oxydans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call