Abstract
Understanding the early onset of neurodegeneration is crucial to deploy specific treatments for patients before the process becomes irreversible. Copper has been proposed as a biomarker for many neurodegenerative disorders, being the ion released by pathologically unfolded proteins involved in many biochemical pathways. Dendrimers are macromolecules that bind metal ions with a large ion/ligand ratio, thus, allowing a massive collection of copper. This work provides structural information, obtained via molecular modeling and EPR, for the binding sites of copper in polypropyleneimine (PPI) dendrimers, especially in the maltose decorated form that has potential applications in diagnosis and therapies for various types of neurodegenerations. The analysis of the EPR spectra showed that, at the lowest Cu concentrations, the results are well supported by the calculations. Moreover, EPR analysis at increasing Cu(II) concentration allowed us to follow the saturation behavior of the interacting sites identified by the modeling study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.