Abstract

BackgroundEnsiling cannot be utilized as a stand-alone pretreatment for sugar-based biorefinery processes but, in combination with hydrothermal processing, it can enhance pretreatment while ensuring a stable long-term storage option for abundant but moist biomass. The effectiveness of combining ensiling with hydrothermal pretreatment depends on biomass nature, pretreatment, and silage conditions.ResultsIn the present study, the efficiency of the combined pretreatment was assessed by enzymatic hydrolysis and ethanol fermentation, and it was demonstrated that ensiling of sugarcane bagasse produces organic acids that can partly degrade biomass structure when in combination with hydrothermal treatment, with the consequent improvement of the enzymatic hydrolysis of cellulose and of the overall 2G bioethanol process efficiency. The optimal pretreatment conditions found in this study were those using ensiling and/or hydrothermal pretreatment at 190 °C for 10 min as this yielded the highest overall glucose recovery yield and ethanol yield from the raw material (0.28–0.30 g/g and 0.14 g/g, respectively).ConclusionEnsiling prior to hydrothermal pretreatment offers a controlled solution for wet storage and long-term preservation for sugarcane bagasse, thus avoiding the need for drying. This preservation method combined with long-term storage practice can be an attractive option for integrated 1G/2G bioethanol plants, as it does not require large capital investments or energy inputs and leads to comparable or higher overall sugar recovery and ethanol yields.

Highlights

  • Sugarcane bagasse (SCB) is an abundant lignocellulosic agro-industrial by-product generated during sugar manufacturing, after the sugar juice is extracted from the sugarcane crop

  • From the 7% (w/w) xylose supplemented for the ensiling process, approximately half (3.6% w/w) was recovered in the water extract from ensiled sugarcane bagasse (ESCB)

  • The combination of ensiling with hydrothermal pretreatment (HTT) was evaluated for the conversion of SCB to ethanol

Read more

Summary

Introduction

Sugarcane bagasse (SCB) is an abundant lignocellulosic agro-industrial by-product generated during sugar manufacturing, after the sugar juice is extracted from the sugarcane crop. Since only about one-third to half of the available bagasse is required to produce the energy needed for the 1G bioethanol process, the integration of the 2G process is estimated to increase the total ethanol production by 40% [4]. Furlan et al [6] compared the economic feasibility of 1G, 1G plus electric energy, and integrated 1G/2G bioethanol biorefinery plants in Brazil and concluded that the dedicated 1G/2G bioethanol biorefinery was most advantageous. Technologies allowing long-term storage of the bagasse are an attractive option for integration of 1G/2G bioethanol biorefineries. Ensiling cannot be utilized as a stand-alone pretreatment for sugar-based biorefinery processes but, in combination with hydrothermal processing, it can enhance pretreatment while ensuring a stable long-term storage option for abundant but moist biomass. The effectiveness of combining ensiling with hydrothermal pretreatment depends on biomass nature, pretreatment, and silage conditions

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call