Abstract
We here combine the electrostatically embedded multiconfiguration molecular mechanics (EE-MCMM) method for generating global potential energy surfaces in the presence of an electrostatic potential with molecular mechanics (MM). The resulting EE-MCMM/MM method is illustrated by applying it to carry out a molecular dynamics simulation for the symmetric bimolecular reaction Cl(-) + CH3Cl' → ClCH3 + Cl'(-) in aqueous solution with hybrid density functional theory as the quantum mechanical level. The potential of mean force is calculated, and the free energy barrier is found to be 25.3 kcal/mol, which is in good agreement with previous work. The advantage of the combined EE-MCMM and MM method is that the number of quantum mechanical calculations required for the active subsystem is very small compared to straight direct dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.