Abstract

AbstractCoupon specimens of poled and depoled lead zirconate titanate (PZT) are examined under combined stress wave and electric loading conditions. Mode‐I crack initiation and fracture behavior is examined using ultrahigh‐speed imaging and two‐dimensional digital image correlation. The dynamic critical stress intensity factor () is extracted using measured displacement fields ahead of the impulsively loaded crack tip, and compared between poled and depoled plates that were either under no electric field, positive 0.46 kV/mm electric field, or negative 0.46 kV/mm electric field. Poled specimens had a poling direction and applied electric field direction normal to the crack front. The addition of an electric field resulted in a crack‐enhancing effect, where the dynamic fracture toughness of poled specimens under 0.46 kV/mm was almost half that of samples with no electric field. Depoled samples experienced almost no change in dynamic fracture toughness with the addition of an electric field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.