Abstract

Since 1572, 33 phreatic to phreatomagmatic eruptions have occurred on Taal volcano (Philippines), some of them causing several hundred casualties. Considering the time delay between two consecutive eruptions, there is an 88% probability that Taal volcano should have already erupted. Since 1992, several phases of seismic activity have been recorded accompanied by ground deformation, opening of fissures, and surface activity. The volcanic activity of Taal appears to be controlled by dike injections and magma supply, buffered by a hydrothermal system that releases fluids and heat through boiling and subsequent steaming. In early 2005, a multidisciplinary project was launched for studying the hydrothermal activity. To map the hydrothermal system, combined surveys were carried out to investigate self-potential, total magnetic field, ground temperature and carbon dioxide soil degassing, along with satellite thermal imaging of the Main Crater Lake. The elevated temperatures and high concentrations of carbon dioxide, as well as electromagnetic anomalies, indicate large-scale hydrothermal degassing. This process is enhanced along the tectonic features (e.g., crater rim and faults) of the volcano, while active fissures opened along the E–W northern flank during the 1992–1994 seismic activity. Heat and fluids from the hydrothermal system are essentially released in the northern part of the crater, which is bounded to the South by a suspected NW–SE fault along which seismicity seems to take place, and dikes are thought to be intruded. During the January 2005 surveys, a new seismic crisis started, and the felt earthquakes prompted spontaneous evacuation of hundreds of inhabitants living on the volcano. Repeated surveys show changes of self-potential, total magnetic field, and ground temperature with time, without any noticeable spatial enlargement. These observations suggest that the northern flank located between the crater rim and the 1992–1994 fissures is connected with a deep thermal source in Main crater and is reactivated during seismic crises. This sector could be subjected to flank failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.