Abstract

The purpose of this study was to evaluate the effects of a new high-intensity training modality comprised of vibration exercise with superimposed resistance exercise and vascular occlusion (vibroX) on skeletal muscle and performance. Young untrained women were randomized to either train in a progressive mode on 3 days per week for 5 weeks ( N=12) or to maintain a sedentary lifestyle ( N=9). VibroX increased peak cycling power (+9%, P=0.001), endurance capacity (+57%, P=0.002), ventilatory threshold (+12%, P<0.001), and end-test torque (+15%, P=0.002) relative to the sedentary group. Training load increased by 84.5% ( P<0.001) after vibroX. The increases were paralleled by increases in myosin heavy chain type 1 vastus lateralis muscle fiber cross-sectional area (+14%, P=0.031) and proportion (+17%, P=0.015), thigh lean mass (+4%, P=0.001), capillary-to-fiber ratio (+14%, P=0.003), and cytochrome c oxidase activity. Conversely, maximal values for oxygen consumption, cardiac output, isokinetic leg extension power and jumping power remained unaffected. Notably, vastus lateralis muscle adaptations were achieved with a very low weekly training volume. We conclude that vibroX quickly increases muscle (fiber) size, capillarization, and oxidative potential, and markedly augments endurance capacity in young women.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.