Abstract

Pulsed film cooling jets subject to periodic wakes were studied experimentally. The wakes were generated with a spoked wheel upstream of a flat plate. Cases with a single row of cylindrical film cooling holes inclined at 35deg to the surface were considered at blowing ratios B of 0.50 and 1.0 with jet pulsing and wake Strouhal numbers of 0.15, 0.30, and 0.60. Wake timing was varied with respect to the pulsing. Temperature measurements were made using an infrared camera, thermocouples, and constant current (cold wire) anemometry. The local film cooling effectiveness and heat transfer coefficient were determined from the measured temperatures. Phase locked flow temperature fields were determined from cold-wire surveys. With B=0.5, wakes and pulsing both lead to a reduction in film cooling effectiveness, and the reduction is larger when wakes and pulsing are combined. With B=1.0, pulsing again causes a reduction in effectiveness, but wakes tend to counteract this effect somewhat by reducing jet lift-off. At low Strouhal numbers, wake timing had a significant effect on the instantaneous film cooling effectiveness, but wakes in general had very little effect on the time averaged effectiveness. At high Strouhal numbers, the wake effect was stronger, but the wake timing was less important. Wakes increased the heat transfer coefficient strongly and similarly in cases with and without film cooling, regardless of wake timing. Heat transfer coefficient ratios, similar to the time averaged film cooling effectiveness, did not depend strongly on wake timing for the cases considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.