Abstract

Urban pollution and hydrological stress are common stressors of stream ecosystems, but their combined effects on ecosystem functioning are still unclear. We measured a set of functional processes and accompanying environmental variables in locations upstream and downstream of urban sewage inputs in 13 streams covering a wide range of water pollution levels and hydrological variability. Sewage inputs seriously impaired stream chemical characteristics and led to complex effects on ecosystem functioning. Biofilm biomass accrual, whole-reach nutrient uptake and metabolism (ecosystem respiration) were generally subsidized, whereas organic matter decomposition and biofilm phosphorus uptake capacity decreased with increasing pollutant concentrations. Hydrological stress affected stream ecosystem functioning but its effect was minor compared to the effects of urban pollution, due to the large inter-site variability of the streams. Changes appeared mainly linked to the concentration of pharmaceutically active compounds, followed by other chemical characteristics and by hydrology. The results point to the need to further improve sewage treatment, especially as climate change will stress riverine organisms and reduce the dilution capacity of the receiving streams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.