Abstract
Background:Cancer is deadly to most of its patients. Consequently, researchers and modelers studies show that there are many ways to cure and destroy it. One of the effective ways is to inject the blood vessel close to the tumor with magnetic nanoparticles. Another way called the radiation therapy or radiotherapy, which eradicates cancer cells through high doses of radiation.Objective:This paper opts to investigate the influences of thermal radiation and variable electrical conductivity on peristaltic flow of Carreau Nanofluids. First order chemical reaction, Dufour and Soret effects are taken into consideration.Methods:The resulting system of partial differential equations is solved numerically with the aid of Parametric-NDSolve. Results for velocity, temperature and concentration distributions are obtained in the analytical two-dimensional and three-dimensional forms. The streamlines graphs are offered in the terminus, elucidating the trapping bolus phenomenon.Results:It has been found that thermal radiation is a decreasing function in the temperature of the fluid. As the temperature decreases, the diameter of the nanoparticles increases i.e., the volume of nanoparticle and its concentration increases and become more effective near tumor tissues.Conclusion:Radiotherapy and Thermotherapy are effective methods to cure and damage the tumor tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.