Abstract

The combined effect of the loading angle (ψ) and the in-plane orientation angle (β) on the dynamic enhancement of aluminium alloy honeycombs is investigated. Experimental results are analysed on the crushing surfaces (initial peak and average crushing forces). A significant effect of the loading angle is reported. The dynamic enhancement rate depends on the loading angle until a critical loading angle (ψ critical ). Beyond, a negative dynamic enhancement rate is observed. Concerning the in-plane orientation angle β effect, it depends on the loading angle ψ under quasi-static conditions. Under dynamic conditions, a significant effect is reported independently of the loading angle ψ. Therefore, the dynamic enhancement rate depends on the combined effects of ψ and β angles. A global analysis of the buckling mechanisms allowed us to explain the combined effect of ψ and β angles on the initial peak force. The collapse mechanisms analysis explain the negative dynamic enhancement rate for large loading angles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call