Abstract
The combined influence of shear thinning and viscous heating on the behavior of film thickness and friction in elastohydrodynamic lubrication (EHL) rolling/sliding line contacts is investigated numerically. The constitutive equation put forward by Carreau is incorporated into the model to describe shear thinning. An extensive set of numerical simulations is presented. Comparison of the film thickness predictions with published experiments reveals good agreement, and it is shown that thermal effect plays an important role in the precise estimation of EHL film thickness and friction coefficient. Parametric simulations show that thermal effect in shear-thinning fluids is strongly affected by the power-law index used in the Carreau equation. Comparisons of prediction of the Newtonian fluid model are presented to quantify the degree to which it overestimates the film thickness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.