Abstract

The combined effects of polycyclic aromatic hydrocarbons and seawater acidification are poorly understood. Hence, we exposed the bloom-forming diatom Skeletonema costatum to four concentrations (0, 0.1, 1 and 10 μg L−1) of benzo(a)pyrene and two pCO2 levels (400 and 1000 μatm) to investigate its physiological performance. The growth and photosynthesis of S. costatum were tolerant to low and moderate benzo(a)pyrene concentrations regardless of the pCO2 level. However, the highest benzo(a)pyrene concentration had remarkably adverse effects on most parameters, decreasing the growth rate by 69%. Seawater acidification increased the sensitivity to high light stress, as shown by the lower maximum relative electron transport rate and light saturation point at the highest benzo(a)pyrene concentration. Our results suggested that benzo(a)pyrene could be detrimental to diatoms at a habitat-relevant level, and seawater acidification might further decrease its light tolerance, which would have important ramifications for the community structure and primary production in coastal waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call