Abstract

The combined effects of pH and borohydride reduction on the optical properties of a series of humic substances and a lignin model were examined to probe the molecular moieties and interactions that give rise to the observed optical properties of these materials. Increasing the pH from 2 to 12 produced significantly enhanced absorption across the spectra of all samples, with distinct spectral responses observed over pH ranges attributable to the deprotonation of carboxylic acids and phenols. Borohydride reduction substantially attenuated the broadband absorption enhancements with pH, clearly indicating that the loss of absorption due to ketone/aldehyde reduction is coupled with the pH-dependent increase in absorption due to deprotonation of carboxylic acids and phenols. These results cannot be easily explained by a superposition of the spectra of independently absorbing chromophores (superposition model) but are readily interpretable within a charge transfer (CT) model. Changes of fluorescence emission with pH for both untreated and borohydride reduced samples suggest that a pH-dependent structural reorganization of the HS may also be influencing the fluorescence emission. Independent of optical model, these results demonstrate that chemical tests targeted to specific moieties can identify distinct structural differences among HS sources as well as provide insight into the molecular moieties and interactions that produce the observed optical and photochemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.