Abstract

Phosphorus (P) containing minerals are identified as effective Pb stabilizers in soil, while their low solubility limit the Pb immobilization efficiency. In this work, the combination of phosphate solubilizing fungi (PSF) Penicillium oxalicum and tricalcium phosphate (TCP) was constructed and applied to improve Pb immobilization stabilities in medium and soils. P. oxalicum+ TCP could significantly improve Pb2+ removal to above 99% under different TCP/Pb2+ and pH values. TCP and P. oxalicum could remarkably immobilize Pb by ion exchange, and PbC2O4 precipitation or surface adsorption, respectively. While the enhanced Pb immobilization in P. oxalicum+ TCP was explained by stronger Pb2+ interaction with tryptophan protein-like substances in extracellular polymeric substance, and the formation of the most stable Pb-phosphate compound hydroxypyromorphite (Pb5(PO4)3OH). Toxicity characteristic leaching procedure test showed that only 0.91% of Pb2+ was leachable in P. oxalicum+ TCP treatment, significantly lower than that in P. oxalicum (2.90%) and TCP (7.52%) treatments. In addition, the lowest soil exchangeable Pb fraction (37.1%) and the highest available soil P (88.0 mg/kg) were both found in P. oxalicum+ TCP treatment. By synergistically forming stable Pb-containing products, thus the combination of PSF and P minerals could significantly improve Pb2+ immobilization and stability in soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call