Abstract
In this study, we analyze the unexplored field of combined effects of active surface area and p–n heterojunctions of a composite material dedicated to gas sensing applications. The used materials are thin films of mixtures of copper and zinc oxides. Individually, both copper oxide and zinc oxide shows interesting sensing performances toward a broad category of gases. The investigated films are obtained by thermal oxidation of Cu/Zn metallic multilayers. Cu/Zn metallic multilayers were obtained by using physical vapor deposition technique. The sensitivity of the composite materials, at ethanol, LPG and CO respectively, was investigated and it was observed that the highest sensitivity is obtained for ethanol. Complementary investigations (X-ray Diffraction, X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy respectively) were conducted in order to understand, explain and confirm the relationship between the oxidation conditions, structure, surface morphology and the exhibit sensing properties. The experimental results indicate that the sensitivity depend on the oxidation duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.