Abstract
Ocean deoxygenation, acidification, and decreased phosphorus availability are predicted to increase in coastal ecosystems under future climate change. However, little is known regarding the combined effects of such environmental variables on the green tide macroalga Ulva prolifera. Here, we provide quantitative and mechanistic understanding of the acclimation mechanisms of U. prolifera to ocean deoxygenation, acidification, and phosphorus limitation under both laboratory and semi-natural (mesocosms) conditions. We found that there were significant interactions between these global environmental conditions on algal physiological performance. Although algal growth rate and photosynthesis reduced when the nitrogen-to‑phosphorus (N/P) ratio increased from 16:1 to 35:1 under ambient CO2 and O2 condition, they remained constant with further increasing N/P ratios of 105:1, 350:1, and 1050:1. However, the increasing alkaline phosphatase activities at high N/P ratios suggests that U. prolifera could use organic P to support its growth under phosphorus limitation. Deoxygenation had no effect on specific growth rate (SGR) but decreased photosynthesis under low N/P ratios of 16:1, 35:1, and 105:1, with reduced activities of several enzymes involved in N assimilation pathway being observed. Elevated CO2 promoted algal growth and alleviated the negative effect of deoxygenation on algal photosynthesis. The patterns of responses to high CO2 and low O2 treatments in in situ experiments were generally consistent with those observed in laboratory experiments. Our results generally found that the strong physiological acclimation capacity to elevated CO2, low O2, and high N/P could contribute to its large-scale blooming in coastal ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.