Abstract
This paper presents a three-dimensional, numerical thermo-hydrodynamic and second low analysis of nanofluid flow inside a square duct equipped with transverse twisted-baffles. A finite volume method is employed to simulate forced convection of heat in the system with the inclusion of Brownian motion of the nanoparticles. The ultimate aim is to gain further understanding of the underlying physical processes and also to determine the optimal design and working conditions of the system. The effects of variations in the pitch intensity (γ) from 180° to 540° and volume fraction of nanoparticles (φ) from 0 to 0.05 on the nanofluid flow, heat convection and thermodynamic irreversibilities are investigated. The numerical results show that the baffle with γ = 360° features the maximum value of heat transfer coefficient among all values of γ. Additionally, the baffle with γ = 540° shows the minimum pressure drop for the entire range of γ. Finally, it is shown that the thermal entropy generation decreases by increasing the volume fraction of nanoparticles or inserting baffles inside the duct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.