Abstract

The spatial and seasonal alteration in a battery of biomarkers responses (enzymatic activity of glutathione-S-transferase, catalase and acetylcholinesterase and lipid peroxidation) were investigated to assess the metal derived effects in clam (Ruditapes decussatus) gills, collected from Tunis lagoon (Tunisia). Trace metals (Ag, As, Cd, Cu, Hg, Mn, Ni, Pb, V and Zn) concentrations were assessed seasonally in sediments and tissues of R. decussatus from three different sites (S1, S2 and S3). Bioaccumulation factor (BAF) analysis showed a spatio-temporal variation of metal uptake rates in clams through sediments. Likewise, the multibiomarker approach enabled a time-site trend differentiation between sites with distinctive degrees of anthropogenic contamination. Site S2 was identified as the most impacted region due to the presence of different contamination sources (shipping and industrial activities). The results suggest that biomarker's seasonal variation arises from a complex interaction between environmental conditions (e.g. temperature, salinity) and probably biological factors (mainly the reproduction process) along with anthropogenic pressure. The general biological response measured with the IBR index at all the sampling sites revealed the highest metabolic stress in summer. The combined effects of metal contamination and increased temperature and salinity in summer appear to induce the highest metabolic adaptation response. The selected biomarkers provided an integrated response, which is useful for the assessment of the combined effects of metal contamination and abiotic parameters in clams and the environmental status of coastal lagoon ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call