Abstract

Formal reduction potentials of highly oxidizing and short-lived radical cations of substituted biphenyls generated by pulse radiolysis in 1,2-dichloroethane (DCE) were measured using a redox equilibrium ladder method. The effect of halide ion-radical interactions on reduction potentials of biphenyls was examined by utilizing the ability of DCE to release Cl- in the vicinity of the radical cation. The Hammett correlation of measured potentials across a range of over 700 mV shows saturation at high Hammett sigma values. This effect has been explained by both ion-pairing and hemicolligation interactions between biphenyl radical cations and Cl- and appears to modulate reduction potentials by as much as 400 mV. This finding offers a convenient way to manipulate the energetics of electron transfer involving organic redox species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call