Abstract

We study a steady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid in a rotating system between two infinitely long parallel plates in the presence of a uniform transverse magnetic field on taking Hall Current into account. The governing equations describing the flow are solved analytically. It is observed that the Hall currents accelerate the primary velocity whereas they retard the secondary velocity. The induced magnetic field is significantly affected by the Hall currents. An increase in Hall currents leads to fall in the fluid temperature. The heat transfer characteristics have also been studied. The rate of heat transfer at the lower plate decreases whereas the rate of heat transfer at the upper plate increases with an increase in Hall parameter. The asymptotic behavior of the solutions are discussed for small and large values of magnetic parameter and rotation parameter. It is interesting to note that either for strong magnetic field or for large rotation there exists a single-deck boundary layer in the region near the stationary plate. The thickness of this boundary layer first decreases, reaches a minimum and then increases with an increase in Hall parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.