Abstract

Global warming and environmental pollution threaten aquatic ecosystems. While interactive effects between both stressors can have more than additive consequences, these remain poorly studied for most taxa. Especially chronic exposure trials with vertebrates are scarce due to the high time- and monetary costs of such studies. We use the recently-established fish model Nothobranchius furzeri to assess the separate and combined effects of exposure to the pesticide chlorpyrifos (at 2 µg/L and 4 µg/L) and a 2 °C temperature increase. We performed a full life-cycle assessment to evaluate fitness-related endpoints including survival, total body length, maturation time, fecundity, critical thermal maximum (CTmax) and locomotor activity. Exposure to 4 µg/L chlorpyrifos slowed down male maturation, reduced fecundity and impaired growth of the fish. While the temperature increase did not affect any of the measured endpoints on its own, the combination of exposure to 2 µg/L CPF with an increase of 2 °C reduced growth and severely reduced fecundity, with almost no offspring production. Together, these findings suggest that climate change may exacerbate the impact of environmental pollution, and that interactive effects of chronic exposure to multiple stressors should be considered to predict how populations will be affected by ongoing global change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.