Abstract

The multidrug resistance of epilepsy may result from the overexpression of P-glycoprotein, but the mechanisms are unclear. We investigated whether the overexpression of P-glycoprotein in the brains of subjects with pharmacoresistant epilepsy resulted from both drug effects and seizure activity. Kindled rats were developed by injecting a subconvulsive dose of pentylenetetrazole (33 mg.kg(-1).day(-1), i.p.) for 28 days. Groups were then treated with an oral dose of phenobarbital (45 mg x kg(-1) x day(-1)) for 40 days. In accord with behavioural observations, P-glycoprotein activity in brain was assessed using brain-to-plasma concentration ratios of rhodamine 123. P-glycoprotein levels in the brain regions were further evaluated using RT-PCR and Western blot analysis. The distribution of phenobarbital in the brain was assessed by measuring phenobarbital concentrations 1 h following its oral administration. The kindling significantly increased P-glycoprotein activity and expression. Good associations were found among P-glycoprotein activity, expression and phenobarbital concentration in the hippocampus. Short-term treatment with phenobarbital showed good anti-epileptic effect; the maximum effect occurred on day 14 when overexpression of P-glycoprotein was reversed. Continuous treatment with phenobarbital had a gradually reduced anti-epileptic effect and on day 40, phenobarbital exhibited no anti-epileptic effect; this was accompanied by both a re-enhancement of P-glycoprotein expression and decreased phenobarbital concentration in the hippocampus. P-glycoprotein function and expression were also increased in age-matched normal rats treated with phenobarbital. The overexpression of P-glycoprotein in the brain of subjects with pharmacoresistant epilepsy is due to a combination of drug effects and epileptic seizures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.