Abstract

Some recent studies showed that in vitro bioassays based on fish or human estrogen receptor (ER) activation may have distinct responses to environmental samples, highlighting the need to better understand bioassay-specific ER response to environmental mixtures. For this purpose, we investigated a 12-compound mixture in two mixture ratios (M1 and M2) on zebrafish (zf) liver cells stably expressing zfERα (ZELHα cells) or zfERβ2 (ZELHβ2 cells) and on human ER-reporter gene (MELN) cells. The mixture included the well-known ER ligands bisphenol A (BPA) and genistein (GEN), and other compounds representatives of a freshwater background contamination. In this context, the study aimed at assessing the robustness of concentration addition (CA) model and the potential confounding influence of other chemicals by testing subgroups of ER activators, ER inhibitors or ER activators and inhibitors combined. Individual chemical testing showed a higher prevalence of ER inhibitors in zebrafish than human cells (e.g. propiconazole), and some chemicals inhibited zfER but activated hER response (e.g. benzo(a)pyrene, triphenylphosphate). The estrogenic activity of M1 and M2 was well predicted by CA in MELN cells, whereas it was significantly lower than predicted in ZELHβ2 cells, contrasting with the additive effects observed for BPA and GEN binary mixtures. When testing the subgroups of ER activators and inhibitors combined, the deviation from additivity in ZELHβ2 cells was caused by zebrafish-specific inhibiting chemicals. This study provides novel information on the ability of environmental pollutants to interfere with zfER signalling and shows that non-estrogenic chemicals can influence the response to a mixture of xeno-estrogens in a bioassay-specific manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call