Abstract

The combined effects of an in-growth direction applied electric field and hydrostatic pressure on the exciton binding energy and photoluminescence energy transitions are reported in this work for triple vertically coupled quantum dots. The calculations have been carried out within the effective mass approximation, and using a variational procedure. The results show that the exciton binding energy and the photoluminescence energy transitions are functions of external probes like the hydrostatic pressure and the applied electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.