Abstract

The influence of hard-segment structure on the properties of segmented polyhydroxyurethane (PHU) was investigated using three bis-carbonate molecules: divinylbenzene dicyclocarbonate (DVBDCC), Bisphenol A dicarbonate (BPADC), and resorcinol bis-carbonate (RBC). These carbonates were formulated with poly(tetramethylene oxide) (PTMO)-based and polybutadiene-co-acrylonitrile (PBN)-based soft segments at 40 wt % hard-segment content, resulting in non-isocyanate polyurethanes (NIPUs). Small-angle X-ray scattering, dynamic mechanical analysis, and tensile testing reveal that hard-segment and soft-segment structures may cooperatively influence segmented PHU properties. With PTMO-based soft segment, BPADC yields phase-mixed PHU because of strong intersegmental hydrogen bonding from the hard-segment hydroxyl groups to the soft segment; in contrast, because of moderate intersegmental hydrogen bonding to the PTMO-based soft segment, DVBDCC and RBC lead to nanophase-separated PHUs with 15–17 nm interdomain spacings w...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.