Abstract
Growing evidence links long-term air pollution exposure with renal function. However, little research has been conducted on the combined effects of air pollutant mixture on renal function and multiple mediation effects of metabolic risk factors. This study enrolled 8996 adults without chronic kidney disease (CKD) at baseline from the CHCN-BTH cohort study. Three-year exposure to air pollutants [particulate matter ≤ 2.5 µm (PM2.5), PM10, PM1, ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO)] and PM2.5 components [black carbon (BC), ammonium (NH4+), nitrate (NO3-), sulfate (SO42-) and organic matter (OM)] were assessed using well-validated machine learning methods. Linear mixed models were applied to investigate the associations between air pollutants and estimated glomerular filtration rate (eGFR). Quantile G-computation was used to assess the combined effects of pollutant mixtures. Causal mediation analysis and Bayesian mediation analysis were employed to estimate the mediation effects of metabolic risk factors. An interquartile range increases in BC (−0.256, 95 %CI: −0.331, −0.180) and OM (−0.603, 95 %CI: −0.810, −0.397) were significantly associated with eGFR decline; while O3 (1.151, 95 %CI: 0.813, 1.489), PM10 (0.721, 95 %CI: 0.309, 1.133), NH4+ (0.990, 95 %CI: 0.638, 1.342), and NO3- (0.610, 95 %CI: 0.405, 0.815) were associated with higher eGFR. The combined effect of the PM2.5 component mixture was found to be associated with lower eGFR (−1.147, 95 % CI: −1.456, −0.839), with OM contributing 72.4 % of the negative effect. Univariate mediation analyses showed that high-density lipoprotein (HDL) mediated 7.1 %, 6.9 %, and 6.1 % effects of O3, BC, and OM, respectively. However, these mediation effects were not significant in Bayesian mediation analysis. These findings suggest the effect of the PM2.5 component mixture on eGFR decline and the strong contribution of OM. Metabolic risk factors may not mediate the effects of air pollutants. Further study is warranted to clarify the potential mechanisms involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.