Abstract

In this paper, the effect of surface roughness and pressure-dependent viscosity over couple-stresses squeeze film lubrication between circular stepped plates is studied. The modified average Reynolds equation is derived for the one-dimensional roughness structures, namely the radial roughness pattern and azimuthal roughness pattern. Modified equations for the nondimensional pressure, load-carrying capacity, and nondimensional squeeze film time are obtained. Also, the obtained results of our study for some special cases are compared with the previously published smooth surface case, and the results are found to be in very good agreement. It is observed that, one-dimensional azimuthal (radial) roughness pattern on the rough circular stepped plate increases (decreases) the load-carrying capacity and the squeeze film time as compared to the smooth case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call