Abstract

The advantages of using Al2O3, TiO2, SiO2 and CeO2 nanofluids as coolants have been investigated by analysing the combined effect of nanoparticles on thermophysical properties and heat transfer coefficient. The thermal conductivity and viscosity of these nanofluids were measured at two leading European universities to ensure the accuracy of the results. The relative thermal conductivity of nanofluids agreed with the prediction of the Maxwell model within +/−10% even at elevated temperature of 50°C indicating that the Brownian motion of nanoparticles does not affect thermal conductivity of nanofluids. The viscosity of nanofluids is well correlated by the modified Krieger–Dougherty model providing that the effect of nanoparticle aggregation is taken into account. It was found that at the same Reynolds number the advantage of using a nanofluid increases with increasing nanofluid viscosity which is counterintuitive. At the same pumping power nanofluids do not offer any advantage in terms of cooling efficiency over base fluids since the increase in viscosity outweighs the enhancement of thermal conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.