Abstract

The co-existence of engineered nanoparticles (ENPs) in the environment is an emerging issue remaining poorly investigated. The present study aimed at analyzing the fate of binary mixtures of CuO and ZnO ENPs in a soil-plant system. The ENPs were singly or jointly dosed into soil at 300 mg kg−1 and aged for 7 and 30 days. To evaluate nano-specific effects, individual and combined treatments of metal salts were also applied. Interactions between ENPs and soil-grown barley Hordeum vulgare were determined in terms of biomass, plant mineral composition as well as expression of genes regulating metal homeostasis (ZIP1,3,6,8,10,14, RAN1, PAA1,2, MTP1, COPT5) and detoxification (MT1–3). The bioavailability of Zn and Cu in bulk soil and in the rooting zone was determined using the 0.01 mol L−1 CaCl2 extraction. After combined treatment of ENPs, the extractable concentrations of Cu and Zn were lower than upon individual exposure in bulk soil. The opposite tendency was noted for metal salts. Genes related to metal uptake (ZIP) and cellular compartment (PAA2, RAN1) were mostly up-regulated by single rather than combined application of ENPs. The single and joint exposure to metals salts induced the down-regulation of these genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call