Abstract

AbstractMany researchers have conducted extensive experimental and numerical studies to explore the influences of multiple types of fuels. The high demand of energy in the world has led to the growing crisis and depletion of fossil fuels. Therefore, the researchers have focused on investigating renewable energy sources like biodiesel with the aim of suggesting, which energy is more friendly to the environment. Biodiesel has specifications for using it as an alternative fuel to traditional fossil fuels. Whereas, the use of biodiesel fuel in the original design of Diesel engine can emit a higher percentage of nitrogen oxides (NOx). Therefore, to reduce the harmful emissions of the fuel, the injection schemes and injector nozzle bore (INB) of the engine were modified. The present research combines the effect of the nozzle hole diameters and split injection scheme on the performance and combustion parameters of compression ignition (CI) engine was investigated. The engine was fueled with diesel blended of different proportions (Sp20, Sp40, Sp60, and Sp100) of spirulina biodiesel to prove the suitability of this blend as an alternative fuel. The injector nozzle has three injection holes, and the diameter of the three modified holes of the nozzle is changing (from 0.20 to 0.28 mm, step 0.02 mm) along with two types of scheme injection (double and triple). Furthermore, the influence of the direct injection Diesel‐RK model, single‐cylinder, four‐stroke engine; constant compression ratio (17.5:1), engine speed (1500 rpm), and naturally aspired engine at full load condition are studied. A comparison of the present simulation is compared with published results to validate the present simulation model for conventional baseline Diesel for validation. The simulation was done to investigate and present a comparative study with the conventional baseline Diesel engine. The double injection scheme shows a decrease by 1.8%, 1.7%, and 1.9% for parameters of peak cylinder pressure (PCP), peak cylinder temperature (PCT), and maximum rate of pressure rise, respectively. Whereas, the specific fuel consumption (SFC) and break thermal efficiency are increased by 8.7% and 9.33%, respectively. The results showed a reduction by 2.1%, 20.5%, 22.1%, and 3.2% in PCP, PCT, maximum rate of pressure rise, and break thermal efficiency, respectively. Moreover, the SFC is increased by 3.1% with the modified INB 0.28 (mm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.