Abstract

The strong biological production of estuarine intertidal flats is mainly supported by benthic diatoms in temperate areas. Their photosynthetic productivity is largely driven by changes in light intensity and temperature at the surface of sediment flats during emersion. The impact of an increase in salinity of the upper-layer sediment pore-water during emersion, which is often coupled with high light (HL), has been less studied. Furthermore, benthic diatoms show several growth forms which inhabit specific sediment types where the pore-water salinity can differentially vary due to the degree of cohesion of sediment grains. So far, no study explored if the main growth forms of benthic diatoms (i.e. epipelon, epipsammon and tychoplankton) show different photophysiological response to a combine high salinity-HL stress. Based on field monitoring, we compared the photophysiology (photosynthetic efficiency and photoprotection) of three representatives of the main growth forms during a short high salinity coupled with a moderate HL stress and stable optimal temperature, i.e. experimental conditions reproducing Spring environmental conditions in intertidal flats by the Atlantic French coast. Our results show that all growth forms reacted to HL exposure alone, as expected. While the epipelon representative was relatively insensitive to high salinity alone and combined with HL, the tychoplankton representative was highly sensitive to both, and the epipsammon representative was sensitive mainly to the stress combination. These specific responses fitted well with i) their natural habitat (i.e. more or less cohesive sediment) for which light climate and changes in salinity are different, ii) their growth form (i.e. motile, immotile or amphibious) which determines their probability to be confronted to a combined high salinity-HL stress. Hence, the negative effect of high salinity on photosynthetic efficiency of benthic diatoms appears to be mostly restricted to epipsammon and tychoplankton, and in field conditions, its effect probably remains negligible compared to HL stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call