Abstract
Comminuted orange, a product obtained by grinding the juice and peel and used to formulate beverages, has a high pectin methylesterase (PME) activity; thus the inactivation of this enzyme is necessary to avoid quality losses related to cloud loss. The use of high hydrostatic pressure (HHP) and mild temperature allows inactivation of enzymes with minimal quality changes. This work aimed to evaluate the effect of pressure, mild temperature and time of treatment, including come-up and holding time, on the inactivation of PME in comminuted orange, and to apply kinetic and response surface models (RSM) to predict residual PME activity (A/A0 ). During come-up time in treatments at 68 °C, the higher the pressure, the lower was the A/A0 obtained. At 550 MPa/68 °C/10 min the lowest residual activity value was obtained (15.6%). A/A0 was well adjusted to the RSM, and a first-order kinetic model was applied to describe the inactivation of PME. In general, the higher the pressure, the lower was the A/A0 reached, as the increasing values of k from 3.5 × 10(-2) to 55.5 × 10(-2) min(-1) indicated. Activation volume (Va ) values ranging from -9.2 to -17.7 cm(3) mol(-1) , and activation energies (Ea ) between 50.0 and 68.2 kJ mol(-1) were calculated. 550 MPa/68 °C/10 min, 350 MPa/68 °C/10 min and 450 MPa/56 °C/10 min treatments were satisfactory (∼84% inactivation) to inactivate PME. A first-order kinetic model was applied to describe PME inactivation, and the resulting A/A0 adjusted to the RSM. In addition, linearized Arrhenius and Eyring equations were well fitted in order to obtain Ea and Va , respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.