Abstract

AbstractThe population dynamics of the yellowjacket wasp (Vespula germanica Fabricus) in central Chile were analyzed for the first time. Using a simple Ricker logistic model and adding the effects of local weather variables (temperature and precipitation) and large‐scale climate phenomena as El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM), we modeled the interannual fluctuations in nest density. The best model according to the Bayesian information criterion (BIC) included 1‐year‐lag negative feedback combined with the positive additive effects of ENSO and SAM. According to this model, yellowjacket nest density was favored by warm and dry winters, which probably influenced the survival of overwintering queens. Large‐scale climatic variables [Southern Oscillation Index (SOI) and SAM] described the effect of exogenous factors in wasp fluctuations better than local weather variables did. Our results emphasize the usefulness of climate indices and simple theoretical‐based models in insect ecological research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call